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Abstract

■ In this work, we show that electrophysiological responses dur-
ing pitch perception are best explained by distributed activity in a
hierarchy of cortical sources and, crucially, that the effective con-
nectivity between these sources is modulated with pitch strength.
Local field potentials were recorded in two subjects from primary
auditory cortex and adjacent auditory cortical areas along the axis

of Heschlʼs gyrus (HG) while they listened to stimuli of varying
pitch strength.Dynamic causalmodelingwas used to compare sys-
tem architectures that might explain the recorded activity. The
data show that representation of pitch requires an interaction be-
tween nonprimary and primary auditory cortex along HG that is
consistent with the principle of predictive coding. ■

INTRODUCTION

Mechanisms for pitch perception are a subject of contro-
versy, with some studies suggesting the existence of sin-
gle areas (Bendor & Wang, 2005; Penagos, Melcher, &
Oxenham, 2004; Krumbholz, Patterson, Seither-Preisler,
Lammertmann, & Lutkenhoner, 2003) and others suggest-
ing distributed processing over areas (Griffiths et al., 2010;
Bizley, Walker, Silverman, King, & Schnupp, 2009). We
consider here the idea that pitch perception requires a
functional system comprising several areas with specific
patterns of effective connectivity between them. We test
this idea by comparing different dynamic causal models
of electrical activity recorded directly fromhuman auditory
cortex using depth electrodes: We were particularly inter-
ested in testing biophysicalmodels with a hierarchical con-
nectivity based on a predictive coding account of pitch
perception.

From a psychophysical perspective, pitch is a funda-
mental auditory percept with a complex relationship to
the structure of the sound in frequency and time (see
de Cheveigné, 2005, for a review). From a biological per-
spective, this suggests that the representation of pitch by
the brain will not rest on a simple mapping of stimulus
properties such as frequency. The auditory cortex of mam-
mals contains multiple areas, each containing systematic
frequency mappings, with mirror reversal of frequency
gradients between areas (Kaas & Hackett, 2000). Record-
ings from single neurons have looked at whether some of

these areas might be specialized for the representation of
pitch. In themarmoset, neurons that show a form of “pitch
tuning” have been demonstrated in a low-frequency area
abutting primary cortex in A1 (Bendor & Wang, 2005),
whereas in the ferret, selective responses to pitch (based
on a less strict criterion for pitch responsiveness) have
been demonstrated in multiple areas (Bizley et al., 2009).
In humans, direct recordings of local field potentials

(LFPs) show responses to temporally regular sounds when
these have rates associated with pitch (Griffiths et al.,
2010). The responses are found in human primary cortex
in medial Heschlʼs gyrus (HG) and adjacent nonprimary
areas in HG. fMRI studies (Puschmann, Uppenkamp,
Kollmeier, & Thiel, 2010; Penagos et al., 2004; Patterson,
Uppenkamp, Johnsrude, & Griffiths, 2002) demonstrate
maximal activity in lateral HG activity during pitch per-
ception, although activity does occur in more medial areas
too (see Griffiths et al., 2010, for discussion). Megneto-
encephalography (MEG) studies (Gutschalk, Patterson,
Scherg, Uppenkamp, & Rupp, 2004; Krumbholz et al.,
2003; Gutschalk, Patterson, Rupp, Uppenkamp, & Scherg,
2002) have also demonstrated activity that is lateral to pri-
mary auditory cortex. These studies beg the question as to
how activity in the primary auditory cortex in medial HG
and nonprimary auditory cortex in more lateral parts of
HG is related.
Predictive coding (Friston & Kiebel, 2009; Friston,

2002a,b, 2005; Rao & Ballard, 1999; Mumford, 1992) as a
model for perception posits that the brain uses a hierar-
chical generative model to predict and explain sensations.
Representations of the causes of sensory input (e.g., tem-
poral regularity for pitch perception) are optimized by
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minimizing prediction error: Predictions are passed to
lower levels of a cortical sensory hierarchy by backward
connections where they are compared with low-order rep-
resentations (or sensory input at the lowest level) to pro-
duce a prediction error. The prediction error is then sent
back to the level above via forward connections to improve
the predictions, hence reduce prediction error. This itera-
tive process continues, until the prediction error is mini-
mized and an optimal hierarchical representation is
formed. This model forms a theoretical basis for both vi-
sual (Kersten, Mammasian, & Yuille, 2004; Rao & Ballard,
1999) and auditory (Vuust, Ostergaard, Pallesen, Bailey, &
Roepstorff, 2009) perception. We hoped to find evidence
for this hierarchical message-passing by comparing differ-
ent (hierarchical and nonhierarchical) connectivitymodels
of observed electrophysiological responses.
In the present study, LFPs were recorded from primary

auditory cortex and adjacent auditory cortical areas along
the axis of HG while subjects listened to stimuli with vary-
ing pitch strength. We examined effective connectivity
using dynamic causal modeling (DCM; David et al., 2006)
and Bayesianmodel selection (Penny et al., 2010; Stephan,
Penny, Duanizeau, Moran, & Friston, 2009) to determine
(i) the effective connectivity between medial, middle, and
lateral HG and (ii) how these connections are modulated
with varying pitch strength.
In addition to quantifying effective connectivity be-

tween areas, DCM allows the comparison of hierarchical
architectures within the auditory system by defining for-
ward connections (from lower to higher areas), parallel
connections (between areas at the same level in the hier-
archy), and backward connections (from higher to lower
areas). In our DCM, forward connections are modeled as
originating in pyramidal cells and targeting granular layers,
whereas backward connections target supragranular and
infragranular layers (cf. Felleman & Van Essen, 1991). We
hypothesized (i) that lateral HG is at a higher level in the
auditory hierarchy than medial HG and (ii) that the top–
down influence of higher areas (lateral HG) would in-
crease with the predictability (strength) of pitch, in accord
with the predictive coding model; that is, backward con-
nections would predominate over forward connections.
Our results demonstrate prominent effective connectivity
between the three areas consistent with a hierarchical ar-
chitecture and pitch strength-dependent changes in effec-
tive connectivity between lateral HG and lower areas that
are consistent with predictive coding.

METHODS

Dynamic Causal Modeling: Theory

In conventional noninvasive studies of brain function,
brain responses using EEG and MEG or fMRI are routinely
measured in response to a stimulus or when a cognitive/
motor task is performed. However, most of the interesting
things that happen when the brain is activated are hidden

(that is, not directly measurable). For example, activity
measured at one site of the brainmay not be the sole result
of processing at that site, but it may also reflect neuronal
interactions between areas. The goal of DCM is to make
inferences about the hidden parameters and variables
using measured variables. Specifically, DCM tries to ex-
plain the observed brain responses in terms of underlying
causal interactions between different areas at the neuronal
level. The technique was first used to infer the neuronal
interactions from the measured BOLD signals from fMRI
(Friston, Harrison, & Penny, 2003). Subsequently, it has
been extended to EEG/MEG (David et al., 2006) and LFPs
(Moran et al., 2009). Here we apply DCM to LFPs recorded
directly from human auditory cortex. DCM has four com-
ponents: (i) specification of a biologically realistic neuro-
nal model for each area, (ii) specification of models of
causal interactions or extrinsic coupling among different
areas, (iii) selection of the best model or architecture
based on the evidence in the data, and (iv) inference of
the parameters of the best model, given those data.

A single source in DCM is modeled by “a neural mass
model.” The idea behind the neural mass model is that
the state of an ensemble of neurons at a given time can
be characterized by the mean activity of the ensemble.
The dynamics of an ensemble over time can, therefore,
be characterized by how this mean activity evolves over
time and can be specified formally with biologically con-
strained differential equations (see Deco, Jirsa, Robinson,
Breakspear, & Friston, 2008, for a review of neural mass
models). The neural mass model used in DCM was first
described by Jansen and Rit (1995) and comprises three
populations of neurons: A population of (excitatory) pyra-
midal cells receives inputs from excitatory and inhibitory
interneurons (Supplementary Figure 1A). In DCM, each
source is modeled with a three-population Jansen and
Rit model, where the subpopulations are assigned to three
layers: supragranular, granular, and infragranular layers.
Supragranular and infragranular layers comprise the
superficial and deep pyramidal cells, respectively, along
with a population of inhibitory interneurons. The granular
layer consists of excitatory interneurons (cf. spiny stellate
cells) only (Supplementary Figure 2A). Synaptic dynamics
are modeled as a linear system, which is characterized by a
(postsynaptic response) kernel with two parameters for
each subpopulation: a time constant and a maximum am-
plitude. Presynaptic activity is convolvedwith the kernel to
produce postsynaptic activity. This is transformed by a
nonlinear sigmoid function to firing rate (see David
et al., 2006; Jansen and Rit, 1995, for details). The output
measured at a given area is modeled as a mixture of depo-
larization of each of the three populations (that is domi-
nated by contributions from the pyramidal cells).

Cortico-cortical connections between different areas are
arranged hierarchically. This hierarchy is reflected in the
laminar pattern of origin and termination of connections
between the two areas (Felleman&Van Essen, 1991). Specif-
ically, forward connections originate in the supragranular
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layers and terminate in the granular layer, whereas back-
ward connections originate in the infragranular layers
and terminate in agranular layers and lateral connections
connect agranular layers (Supplementary Figure 2B). This
means that different areas can be connected by extrinsic
connections that follow these anatomical rules. Each pat-
tern of connections represents a different hypothesis
about the functional architecture and corresponds to a
competing model or DCM. Implementation of these con-
nections using the Jansen and Rit (1995) model is shown
in Supplementary Figure 1B.

The final stageofDCMis the selectionandoptimizationof
their parameters using measured brain responses. Mathe-
matically, any DCM can be described by two equations:

dx
dt

¼ f ðx;u; θÞ ð1Þ

y ¼ gðx; θÞ: ðÞ

The first (state) equation specifies how the experimental
input u(t) influences the dynamics of hidden states x(t)
and the second (observer) equation links the hidden
states x(t) to measured brain responses y(t). θ represents
the unknown parameters of model-like connection
strengths and synaptic parameters, which are to be esti-
mated. The parameters are estimated using Bayesian statis-
tics, which specify the posterior density of parameters θ,
given the data:

pðθ∣y;mÞ ¼ pð y∣θ;mÞpðθ∣mÞ
pð y∣mÞ : ð2Þ

Where p( y∣θ, m) and p(θ∣m) are the likelihood and prior
density of parameters θ, respectively, of a given modelm.
The denominator p( y∣m) is called the model evidence
and is calculated as

pð y∣mÞ ¼ ∫pð y∣θ;mÞpðθ∣mÞdθ: ð3Þ

An iterativemethod called variational Bayes (Friston, 2002a,
b) is used to estimate the posterior density p(θ ∣y, m) and
the model evidence p( y∣m). In this method, posterior
density is approximated by density q(θ ) that is assumed
to be Gaussian. The idea behind variational Bayes is that
the model evidence can be expressed as

ln pð y∣mÞ ¼ Fðq; θ;mÞ þ Dðq∥pðθ∣y;mÞÞ ð4Þ

or

Fðq; θ;mÞ ¼ ln pð y∣mÞ−Dðq ∥pðθ∣y;mÞÞ; ð5Þ

where F is the free energy andD(q ∥ p(θ∣y,m)) is Kullback–
Leibler distance between density q and posterior density
p(θ ∣y, m). Because Kullback–Leibler distance is nonnega-

tive, maximization of free energy minimizes the distance
between q and posterior density. That is, q approximates
the posterior density: q → p(θ ∣y, m). Furthermore, the
maximum value of free energy approximates model log
evidence, that is,

ln pð y∣mÞ ≈ Fðq; θ;mÞ: ð6Þ

The log evidence for different models can be used to deter-
mine the best model, given some data. DCM is usually used
as a hypothesis-driven technique, where a number of mod-
els or hypotheses are specified in advance, and the log evi-
dence for each model is calculated using the free energy
approximation above. A complete list of parameters θ that
are optimized is given in David et al. (2006).

Subjects, Surgery, and Recording

LFPs were recorded from two adult subjects, R154 and L156,
undergoing intracranial electrophysiological recording to
localize epileptic foci. Both subjects had normal hearing
as confirmed by audiometric testing before implantation
of electrodes. Hybrid depth electrodes (Reddy et al., 2010;
Howard et al., 1996) with 14 high impedance contacts (70–
300 kΩ) were implanted along the long axis of HG in right
hemisphere for subject R154 and left hemisphere for
subject L156. The electrode contact positions were deter-
mined by coregistering electrode locations identified on
postoperative MRI scans with the subjectʼs preoperative
three-dimensional brain MRI. The localization procedure
demonstrated that all experimental high impedance elec-
trode contacts in subject R154 and all, but contacts 13 and
14 in subject L156 were in gray matter, along the axis of HG.
The research protocols were approved by the University
of Iowa Human Subjects Review Board. Prior informed
consent was obtained from each subject before the study.
Figure 1 shows the electrode locations in the two subjects.
Electrical activity and effective connectivity were exam-

ined for three contacts in the medial, middle, and lateral
part of HG in each subject. For subject R154, the selected
representative contacts were 1, 8, and 14; for subject L156,
the contacts were 1, 7, and 12. The corresponding Talairach
coordinates for these electrodes (Supplementary Tables 1
and 2) show that they are located at the three sites of max-
imal activity for sound minus silence contrasts in fMRI
(Patterson et al., 2002), where the medial site corresponds
to primary auditory cortex (human homologue of A1). The
lateralmaximamay correspond to homologues of nonprim-
ary areas in macaque (Brugge et al., 2009; Hackett, 2007).

Stimuli

The stimuli consisted of a 1-sec burst of broadband noise
followed by 1.5 sec of regular interval noise (RIN). The RIN
was created using a delay-and-add algorithm (Yost, 1996).

ð1Þ
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RIN is also known as “iterated rippled noise” because of
the ripples that the delay-and-add process induces in the
frequency magnitude spectrum of the stimulus. We use
the term RIN here to emphasize the temporal cue ob-
served in the pattern of neural firing in the auditory nerve
and the temporal cue used in models of RIN perception
(Patterson, Handel, Yost, & Datta, 1996; Yost, Patterson,
& Sheft, 1996). The delay in the delay-and-add cycle deter-
mines the pitch value that the listener hears, and the num-
ber of cycles or iterations determines the pitch strength or
salience (Patterson et al., 1996; Yost et al., 1996). The stim-
uli were normalized to a common power spectral density,
high-pass filtered using a cutoff frequency of 800 Hz (to
remove spectral ripples that might be resolved by the
cochlea) and masked with broadband noise below the
cutoff frequency (Griffiths et al., 2010).

Paradigm

Recordings weremade in a dedicated recording facility in a
shielded room. The experiments employed a passive lis-
tening paradigm. Subjects were awake with eyes open
and relaxed during the recording sessions. The stim-
uli were delivered diotically via Etymotic ER4B earphones
in custom earmolds at a comfortable sensation level of
45–55 dB. The DCM analysis was based on data acquired
with RIN constructed with 8, 16, and 32 iterations and a
fixed pitch value of 128 Hz. There was also a baseline con-
dition with zero iterations, that is, a spectrally matched
noise with no pitch. Time series were recorded from each
electrode and averaged over 50 repetitions for each
stimulus condition.

Data Preparation

LFPs were down sampled to 250 Hz, band-pass filtered be-
tween 4 and 16 Hz, and averaged across trials. This narrow
range of frequency band was chosen to analyze only the
evoked responses time locked to stimulus onset. Evoked
responses during the first 300 msec after RIN onset were
analyzed.

DCM Specification

The principle objective of the present analysis was to ask,
(i) what types of connections (forward, backward or lateral)
couple the medial, middle, and lateral areas of HG and
(ii) how are these connections modulated during the pro-
cessing of stimuli with increasing pitch strength? To address
the first question, a model space (set of models) was con-
structed based on the following biologically informed criteria:

• If an area A sends forward connections to area B, then B
sends backward connections to area A.

• If an area A sends lateral connections to area B, then B
sends lateral connections to area A.

Because there are six connections among the three areas
and the three are fixed by the above constraints (e.g., if
the connection between Regions A and B is specified as
forward, then it follows that connection from B to A is
backward), there are three unspecified connections, each
of which could be forward, backward, or lateral). This
gives 33 = 27 possible models.

To address the second question, amodel space was con-
structed in which every connection in the model is either
modulated or not modulated by temporal regularity. Be-
cause there are six connections, there are 26 = 64 models
for each combination of connection types.

To finesse an exhaustive search over (27 × 64) models
with different connections and modulations, we used a heu-
ristic search strategy in which we first optimized the connec-
tion types (over subjects and pitch strength) and then
optimizing modulation-type models with the ensuing con-
nection types.

The DCMs exogenous inputs (u(t) in Equation 1 above)
comprise input relayed by subcortical structures and were
modeled by gamma functions (David et al., 2006). In the
present study, we used four gamma functions (Supplemen-
tary Figure 3). A gamma function models the event-
related input that is delayed with respect to stimulus onset
(this parameterization of the inputs was optimized using
Bayesian model comparison, with one to six gamma func-
tions).This exogenous input entered all three regions of
HG. We used multiple input components (gamma func-
tions) to model the unknown convolutions of sensory dis-
charges by earlier (subcortical) systems.

Family-wise Model Comparison

Because the connection types among medial, middle, and
lateral regions are not constrained by the nature of the

Figure 1. Electrode locations for the two subjects (subject R154 and
L156) along the axis of HG overlaid on the MRI of the superior temporal
plane. Three contacts, one each in the medial, middle, and lateral parts
of HG, were considered in the effective connectivity analyses. For
subject R154, the chosen contacts were 1, 8, and 14 and for subject
L156 the contacts were 1, 7, and 12.
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exogenous input, all 27 connection-type models were in-
verted for different levels of temporal regularity (8, 16,
and 32 iterations) and both subjects. To determine the
type of a given connection (e.g., between medial and mid-
dle regions), all the models (across all regularity and sub-
jects) were divided into three families: Family F1, in which
the connection was forward; family F2, in which the con-
nection was backward; and family F3, in which the con-
nection was lateral. The posterior probability that each
connection was forward, backward, or lateral was com-
puted by summing the posterior probabilities of all (nine)
models in each family. The posterior probability of each
model was evaluated by summing the log evidence for
each of the (27) models over subjects and regularity (un-
der the assumption of independent data from each obser-
vation). The exponential of these pooled log evidences
was normalized so that their sum was unity. This gives the
posterior model probability, under prior assumptions that
each model was equally probable. Having established
the optimum connection types, we then inverted all 64
modulation-type models and examined the best models
to see how temporal regularity (pitch strength)modulated
those connections.

RESULTS

Type of Connections between Medial, Middle,
and Lateral Regions of HG

We constructed a model space consisting of 27 models
that spanned all possible hypotheses about the types of
connections between medial, middle, and lateral regions

of HG. The family-wise posterior probabilities for each
connection being forward, backward, or lateral are shown
in Figure 2. This figure shows that medial and middle re-
gions are connected to each other by lateral connections,
whereas the lateral part of HG receives forward connec-
tions from and sends backward connections to both the
medial andmiddle part of HG. A schematic representation
of this architecture is shown in Figure 3. On the basis of
the hierarchal specificity of laminar projections (Felleman
& Van Essen, 1991; Maunsell & Van Essen, 1983), these
results suggest as follows:

• The medial and middle parts of HG are reciprocally
connected by lateral connections and are at a similar
level of hierarchy.

• The lateral part of HG is at a higher level of the auditory
hierarchy than medial and middle parts.

Figure 2. Posterior probability
of model families, where each
family (or partition of model
space) was defined in terms of
the connection type for each
connection. The posterior
probability was computed using
fixed effect analysis over three
conditions (8, 16, and 32
iterations) and two subjects.

Figure 3. Most probable connection types between medial, middle,
and lateral parts of HG.
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Modulation of Connectivity by Temporal Regularity

Having established the types of connection, we next inves-
tigated how these connections were modulated by the
temporal regularity of the RIN. Event-related responses
to RINwith 0, 8, 16, and 32 iterations from themedial, mid-
dle, and lateral HG were analyzed together in a single
DCM. This involved optimizing additional parameters that
controlled how pitch strength (number of RIN iterations)
modulated the strength of connections monotonically,
over the four ERPs (as in Garrido et al., 2008). We con-
structed 64 variants of the model shown in Figure 3. These
models were based on all possible combinations of how
pitch strength could modulate extrinsic connections
among the three areas. Posterior probabilities for each
of these 64 models for the two subjects R154 and L156
are shown in Figure 4A and B, respectively. For subject
R154, there are two comparably plausible models (64
and 48) that have posterior probabilities of .52 and .37, re-
spectively. For subject L156, the best model (model 60)
has a posterior probability of .78 and the second best
model (model 44) has a posterior probability of .20. The
best models (64 and 48 for subject R154 and 60 and 44 for
subject L156) for the two subjects are shown in Figure 5.
Red and green triangles denote those connections that are
modulated by pitch strength. These results show that in
subject R154 (Figure 5A), the two winning models have a
very similar structure: Inmodel 64 (posterior probability=
.52), all the connections are modulated, whereas in model
48 (posterior probability = .37), all but the middle to me-
dial connection are modulated by temporal regularity. In
subject L156 (Figure 5B), the best model (model 60, pos-
terior probability= .78) requiresmodulation of all connec-
tions with the exception of lateral tomiddle whereas in the
second best model (model 44, posterior probability = .2),
in addition to the connection in the best model, the con-
nection from middle to medial is also not modulated.

Figure 6 plots the change in connection strength with
temporal regularity for both subjects. Modulation of con-
nectivity for the best model (model 64 in subject R154,
Figure 6A, and model 60 in subject L156, Figure 6B) is
shown in black. Modulation for the second best model
(model 48 in subject R154 and model 44 in L156) is
shown in gray. The profile of modulation is remarkably
consistent between the two subjects and shows distinct
effects of pitch strength on different connections within
the system. The following generalizations can be drawn
from these results:

• For subject R154, all connections show very similar
patterns of pitch strength modulation, except the

Figure 4. Posterior
probabilities of 64 modulation-
type models for subject R154
(A) and for subject L156 (B).

Figure 5. Structure of the best models for subject R154 (A) and for
subject L156 (B).
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connection from middle to medial region, which is
modulated in one model (model 64) but not the other
(model 48).

• For subject L156, the pattern of connectivity is again very
similar except in the middle to medial region, which is
modulated in the best model (model 60) but not in the
second best model (model 44).

• Backward connections from lateral HG (to both medial
andmiddleHG in subject R154 and to onlymedial HG in

subject L156) increase with temporal regularity. In both
subjects, there is almost a doubling of connection
strength with increasing temporal regularity.

• Forward connections from both medial and middle HG
decrease with temporal regularity.

• Lateral connection strengths (from medial to middle
andmiddle tomedial) increasewith temporal regularity.
However, the medial to middle connection changes
much more than the reciprocal connection.

Figure 6. Modulation of
connectivity with temporal
regularity for subject R154 (A)
and for subject L156 (B).
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DISCUSSION

Connection Types in HG

On the basis of cytoarchitectonics, Brodmann (1909) local-
ized primary auditory cortex to HG. However, further
studies have shown that HG is not a single homogeneous
area but consists of at least two areas (von Economo and
Koskinasʼ (1925) areas TC and TD and Galaburda and
Snidesʼ (1980) KAm and kAlt) or three areas (Morosan
et al.ʼs (2001) Te 1.0, Te 1.1, and Te 1.2). To the best of
our knowledge, however, there is no literature on the
types of connections that exist between these distinct re-
gions in humans. We applied DCM to depth electrode data
recorded from the medial, middle, and lateral regions of
HG to infer the types of (effective) connections between
them. Our results suggest that medial and middle regions
are connected by lateral connections, whereas the lateral
region receives forward projections from and sends back-
ward connections to the other two regions of HG. This im-
plies that lateral HG is at a higher level of the auditory
hierarchy than the medial and middle regions (Felleman
and Van Essen, 1991) and medial and middle regions of
HG occupy similar levels.
The notion that lateral HG is at a higher level of hierar-

chy than medial HG agrees with a number of previous
studies. Cytoarchitectonic studies in humans (Morosan
et al., 2001; Galaburda & Snides, 1980) have shown that
lateral HG is less “primary-like” than medial and middle
HG. von Economo and Koskinas (1925) described this
area as a “transition zone between primary and nonprim-
ary areas” (Morosan et al., 2001). Although the homology
between the auditory areas of macaque and human is not
well established, functional studies using the same stimuli
in both humans and macaque have suggested that lateral
HGmay correspond to area R/RT (Baumann et al., unpub-
lished observations) or may correspond to a belt area
(Brugge et al., 2009) in macaques. Moreover, the possibility
that medial and middle regions of HG are at a similar hier-
archical level is consistent with functional studies, which
shows that medial and middle HG have similar responses
and may both lie in the core area (Brugge et al., 2009).

Modulation of Connectivity Strength
with Increasing Temporal Regularity

We have shown that backward connections from lateral
HG (to medial and middle HG) increase with temporal
regularity and forward connections (frommedial and mid-
dle HG) decrease with temporal regularity. These results
can be explained by predictive coding (Friston & Kiebel,
2009; Friston, 2002a,b, 2005; Rao & Ballard, 1999; Barlow,
1994; Mumford, 1992). The idea behind predictive coding
is that, in a hierarchically organized brain, areas higher in
the hierarchy (here lateral HG) use a generative model of
the world to make predictions of representations at lower
levels. These predictions are passed to lower areas by
means of backward connections (here medial and middle

HG). The difference between the actual representation at
the lower area and the prediction is the prediction error.
This is passed back to the higher area by means of forward
connections to adjust the higher level representation: If
the error is large, then the model of the world “stored”
in higher-order area is not correct and needs updating.
This recursivemessage passing entails an iterative process,
which aims at minimizing prediction error at all levels in
the hierarchy, to describe the causes of sensory input at
multiple levels. Clearly, our use of RIN speaks directly to
the predictability of stimuli and the perceptual inferences
about pitch. Our hypothesis assumed that as the predict-
ability of stimuli increased the top–down influences me-
diating predictions would become stronger relative to
bottom–up passing of prediction errors. The theoretical
mechanism behind this effect is quite simple: In computa-
tional models of predictive coding the precision (inverse
variance) of prediction error is encoded by the postsynap-
tic sensitivity of prediction error units, generally thought
to be superficial pyramidal cells. This means that when
stimuli are predictable (and prediction errors are low)
the responsiveness of pyramidal cells to top–down predic-
tions increases (because precision is high). This is what we
observed empirically in the DCM. Similar results have also
been found in studies of perceptual discrimination using
endogenous fluctuations in activity or sensitivity (e.g.,
Hesselmann, Sadaghiani, Friston, & Kleinschmidt, 2010).
This finding is also consistent with the relative decrease
in the strength of forward connections for standard stimuli
relative to unpredicted oddball stimuli using the DCM and
MMN paradigm (e.g., Garrido et al., 2009).

The lateral connections betweenmedial andmiddle HG
are also modulated by temporal regularity. The medial to
middle connection increased in both subjects and middle
to medial connection increased for one subject and de-
creased for the other. One possible functional role of lat-
eral connections is to decorrelate regions of the network,
which respond to the same feature of the stimulus (Sirosh
& Mikkulainen, 1996; Foldiak, 1990). For example, if two
regions respond to the same stimulus feature, then re-
sponses of these two regions will be correlated. Lateral
connections using mutual inhibition reduce this redun-
dancy and make the representations more efficient (a
sparse representation). This can be shown formally to be
an emergent property of predictive coding (Friston, 2008).

There is a close relationship between the number of
iterations used to generate a RIN and the strength of the
pitch that listeners hear, and so the model of regularity
processing has direct implications for models involving
perceptual inferences about pitch and pitch strength. A
number of previous fMRI studies (Penagos et al., 2004;
Patterson et al., 2002) have emphasized a role for lateral
HG in the processing of temporal regularity and the
perception of pitch. Our results suggest a specific role
for lateral HG in pitch prediction as part of a constructive
(predictive) hierarchicalmodel, distributedwithin an audi-
tory pitch system.
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A number of computationalmodels for pitch perception
have been proposed in the literature (de Cheveigné,
2005). Most of these models lack biological realism be-
cause (i) they are driven bottom–up: these models com-
pute some feature (e.g., spectrum or autocorrelation of
the stimulus without using any top–down information,
and (ii) they are nonhierarchical: they extract the percept
only at one scale. The current theories of brain function
suggest that the percept is computed hierarchically at dif-
ferent time scales and is driven both by bottom–up and
top–down flow of information (Friston, 2008). One such
model (Balaguer-Ballester, Clark, Coath, Krumbholz, &
Denham, 2009), emphasizing the role of hierarchies and
top–down effects in computing pitch, was proposed re-
cently. In this model, higher areas optimize the temporal
scale over which information is integrated in lower areas.
Thus, different temporal scales are invoked, depending on
the (slow or fast) dynamics of the stimulus. We suggest
that lateral HG may play a similar role and adapts the time
scale of integration in lower areas (primary auditory cortex
and subcortical areas) in a context-sensitive manner. This
might be achieved using the prediction signal from lateral
HG or the local prediction error signal (e.g., in primary
auditory cortex) to adapt processing in primary auditory
cortex. Please see Kiebel, von Kriegstein, Daunizeau, and
Friston (2009) for a discussion of related mechanisms in
tracking auditory sequences under the predictive coding
framework.

The predictive coding hypothesis has number of con-
sequences, some of which we have exploited when com-
paring different explanations (DCMs) for our data: These
include (i) a hierarchy of cortical levels, (ii) forward and
backward message-passing that entails reciprocal and
directed connectivity, (iii) functional asymmetries in for-
ward and backward connections (modeled here in terms
of the subpopulations targeted), and (iv) top–down in-
fluences can only be expressed when predictions can
be formed, suggesting a predictability-dependent (pitch
salience-dependent) expression of backward effective
connectivity.

Although not explicitly tested here, predictive coding
also suggests (i) areas higher in the hierarchy (lateral HG
in the present study) will have a longer temporal window
of integration. This is because higher areas (which predict
activity in lower areas) receive inputs (prediction errors)
from a number of areas below, each of which integrates
input using a smaller temporal window. (ii) The dynamics
of areas higher in the hierarchy will unfold more slowly
than areas lower in the hierarchy. (iii) Responses (context-
sensitive predictions) to a given event depend on the con-
text surrounding the event. For example, an MEG study
(Chait, Poeppel, & Simon, 2007) showed that responses
to transitions from an ordered train of tone pips to a dis-
ordered train are different when the transition is made in
the reverse direction (that is, from ordered tone pips to dis-
ordered tone pips). See Friston (2008), for a fuller dis-
cussion of these issues.

One possible criticism of our study could be that we have
used only one type of stimulus (RIN), and the analysis is
restricted to areas lying along HG. A recent fMRI study (Hall
& Plack, 2009) using a broader range of pitch-producing
stimuli has shown that pitch-related activity may extend to
areas beyond HG. However, the role of lateral HG in pitch
perception is not restricted to RIN stimuli only. Studies
from several groups using stimuli other than RIN have
shown the role of lateral HG in pitch perception. These
stimuli include harmonic complexes (Penagos et al., 2004;
Warren,Uppenkamp, Patterson,&Griffiths, 2003), Huggins
pitch (Puschmann et al., 2010), and click trains (Gutschalk
et al., 2002, 2004). It will be interesting to see how spe-
cific the system we have identified is to the type of pitch
used.
In our previous study (Griffiths et al., 2010), we ob-

served both evoked and induced high-frequency gamma
(80–120 Hz) in response to RIN all along HG. The latter
particularly occurring when the RIN frequency was above
the lower limit of frequency that is perceived as pitch. In
the current study, we have only focussed on how to ex-
plain the evoked responses in terms of interactions
between the medial, middle, and lateral part of HG. Inter-
actions between these regions in the gamma range will
be addressed in future studies using DCM for induced
responses (Chen, Kiebel, & Friston, 2008).

Reprint requests should be sent to Sukhbinder Kumar, Wellcome
Trust Centre for Neuroimaging, University College London, 12,
Queen Square, London WC1N 3 BG, UK, or via e-mail: sukhbinder.
kumar@ncl.ac.uk.
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